a
/\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

| A \

7~

A

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

2\

P9

y A \
L

OF

A
A

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTiONs ¢ 0= ROVAL A

or—— SOCIETY

Stability of Flow in a Rotating Viscous Incompressible Fluid
Subjected to Differential Heating

J. Brindley

Phil. Trans. R. Soc. Lond. A 1960 253, 1-25
doi: 10.1098/rsta.1960.0016

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1960 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;253/1020/1&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/253/1020/1.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 1]

STABILITY OF FLOW IN A ROTATING VISCOUS INCOMPRESSIBLE
FLUID SUBJECTED TO DIFFERENTIAL HEATING

By J. BRINDLEY
Department of Mathematics, University of Leeds

(Communicated by T. G. Cowling, F.R.S.—Recewed 14 October 1959)
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An attempt is made to find a theoretical explanation for the type of flow observed when a liquid is
subjected at the same time to rotation and to a horizontal temperature gradient. When the liquid
is contained between two concentric cylinders it is known from experiment that two distinct types
of flow occur, one in which the motion is in the form of a meridional vortex with the addition of a
zonal component, and the other in which the motion exhibits a meandering wave-like pattern.
Of vital importance as regards the type of flow is found to be a parameter defined as the Rossby
number for the problem, and two sets of critical values of this parameter are found which bound
the range over which wave motion is possible. Qualitatively this is in complete agreement with
experimental observations, but quantitative results show some discrepancy between theory and
experiment.

PHILOSOPHICAL
TRANSACTIONS
OF

INnTRODUCTION

Experiments by Fultz at the University of Chicago and Hide at Cambridge on the motion
of liquids caused to rotate and subjected to differential heating, as described by Fultz (1956)
and Hide (1958), and the subsequent recognition of the importance of such experiments
in the field of meteorology, have inspired a number of theoretical investigations of the
dynamics and thermodynamics of the motions produced. In particular, Kuo (1954, 1955,
19564, b), Davies (1953, 1956, 1959) and Lorenz (1953) have formulated the problem
mathematically and have established criteria for the onset of instability. The present paper
consists principally of an extension of the methods used by Davies (1956).

Y B \

:é The experiments themselves have taken two slightly different forms; originally Fultz
>-'E carried out a series of so-called ‘dishpan’ experiments, in which a rotating flat vessel,
8 25 30 cm in diameter and containing water to a depth of about 4 cm, was heated from below
- 5 by an annular heating element situated close to the rim. Subsequently he used an apparatus
anl@ similar to that of Hide, consisting of two concentric cylinders, maintained at constant but
= uw

differing temperatures, containing between them the experimental liquid. The dimensions
in this second case were somewhat different in that the depth of the water, about 10 cm,
equalled the diameter of the outer cylinder. Nevertheless, the phenomena observed in the
two cases were very similar, two distinct régimes of flow being recognized. At low rotation
speeds the flow was of the type usually known as the Hadley cell, or smoke-ring type,
i.e. a meridional vortex in which the motion perpendicular to the axis of rotation is deflected
by Coriolis forces, thus giving rise to a zonal component of velocity. Hadley suggested in
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2 J. BRINDLEY ON THE STABILITY OF FLOW

the eighteenth century that such a circulation could account for the trade winds. At higher
rotation speeds a completely new type of flow set in, distinguished by the presence of a
narrow stream of liquid travelling with relatively high velocity in the direction of rotation
and meandering in a wave pattern, rather irregular in the dishpan case, but extremely
regular and persistent in the experiments with two concentric cylinders. This stream appears
to bear a qualitative resemblance to the atmospheric ‘jet-stream’, which is a conspicuous
feature of the middle latitude circulation at high levels.

Both Hide and Fultz have ascribed critical importance, as regards the characteristics
of the flow, to a single parameter which has come to be known as a Rossby number, and
which is essentially of the form R gad(AT),,

o o2
where d = depth of liquid,
p = mean density,
r = horizontal dimension of apparatus,
(2 = angular velocity of apparatus,
(AT'),, = imposed horizontal temperature contrast,
a = coeflicient of expansion of liquid.
They have shown that for values of R, greater than some critical value, R . , the flow
is essentially spiral, while for R,; < Ry ;. the flow is of a wave-like pattern, motion being
largely confined to the meandering jet-stream. The wave-number in the second case depends
on Ry, and increases as R, decreases within certain limits which appear to be imposed by
the geometry of the system. Recent experiments of Fultz, in which he has observed sym-
metric flow patterns for much lower values of R, than hitherto, suggest that a symmetric
flow pattern should be theoretically possible for small R,,. This is in agreement with the
results of the present work, which seem to indicate that, below a certain value of R, motion
of the wave type will be damped out by viscous effects.

1. FORMULATION OF THE PROBLEM

- In the mathematical formulation of the problem, cylindrical co-ordinates (7, ¢, z) are
used, and there are six dependent variables (u,,v,, w,, p, p;, 11), where u,, v,, w, represent
the velocity components in the directions 7 increasng, ¢ increasing, and z increasing, respec-
tively, and p, is the pressure, p, the density, and 77 the temperature. These six dependent
variables are connected by the following six equations:

de, 0}\ _ dp 2 Mi‘i~gavl) .
pla=5) == (TR, )
dv,  uv ) v, 2 du
dw )
i ——%—gm +uViuy, (1-3)
dT,
pr6, o = RV, (14)
pr—po = (T —=Tp), (1-5)
Ouy ) 0 0wy (1-6)
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IN A ROTATING VISCOUS INCOMPRESSIBLE FLUID 3

Equations (1-1) to (1-3) are the equations of motion; (1-4) is the equation of heat transfer
for a liquid, generation of heat by molecular viscosity being neglected ; (1-5) is the equation
of state, and (1-6) the equation of continuity. The slight deviation of the density p, from a
constant value p, is ignored everywhere except in the buoyancy term gp, in equation (1-3).
In this term the linear relation (1-5) is used; this is sufficiently accurate within the tempera-
ture range of the experiments, usually about 10 to 25 °C.

The experiments have revealed that, when the temperature field is averaged for all ¢,
the resulting mean distribution shows an increase in temperature both from the base to the
free surface, and from the central axis (or inner cylindrical wall) to the outer cylindrical
wall. It is evidently possible to regard the temperature pattern in any ¢-plane as a small
departure from this mean temperature field, and accordingly we write

P1 :p*(r,z) —|—p(r,z,¢,t), (1'7)
Ty =T*(r,2)+T(r,2,9,1), (1-8)
where p* and T* represent the mean meridional fields of density and temperature, respec-
tively, and are functions of (7, z) only, while p, T represent the small departures from these
mean fields.
As a result of the mean temperature field, there exists a mean zonal motion in the direc-
tion of ¢ increasing, relative to the rotating cylinder. We therefore assume that the complete
velocity field can be represented in the form

uy =u(r,z,4,8), vy =rQ+V*(r,z)+o(r,z,4,t), w,=w(r,z¢,1), (1-9)
where V*(r,z) is the mean relative zonal velocity associated with the mean temperature
field. The expression for the pressure is

pIZP*(r:Z)+p(7)Z9¢>t): (1.10)
where P*(r,z) is the mean pressure associated with the mean zonal flow and hydrostatic
sources. We are now able to write down the equations governing the mean zonal motion

as fOllOWS 2o (TQ + V*)2 IP*
N 7 o (a)

0 = V2V* —V*/[r2, (b)
0 =—dP*/dz—gp*, (c)|

p* = po—a(T*=T,), (d)

0 =EkV2T*, (e)

The use of an exact solution of the heat-transfer equation (1-11¢) leads to considerable

difficulties in the solution of the perturbation equations later. We therefore follow Davies
(1956) in replacing this equation by

T* =Ty+0,z+ O 372, (1-12)

where ©, and @, are positive constants. This in fact represents a temperature field which

could only be maintained by sinks of heat in the fluid. Ignoring the term p, V*?/r on the
left-hand side of (1-114), on the ground that V* is considerably less than €2, we find that

the corresponding solution for V* is
V* = 2QR,(z/k) 1. (1-13)

-2

(1-11)
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4 J. BRINDLEY ON THE STABILITY OF FLOW
Here 4 is the depth of the liquid and R}, is a non-dimensional constant given by

goh®y

Ry = 4p,02°

(1-14)
which is at once identifiable with the parameter defined by Fultz and Hide, and mentioned
above. The velocity expression (1-13) clearly cannot be valid for all values of 7, since the
velocity V* must vanish at the inner and outer cylindrical walls, but it may be used as an
approximation outside the boundary layers.

Before the equations governing the perturbation field are written down, one other
approximation must be described. In the equation of heat transfer (1-4) the left-hand side
includes a term

AT, (0 VFivd | 2. 0\ ..
s (aﬁ P FARY +a)(T +1)

0T V*OT  9T*  3T*
A A R

+second-order terms,

where ¢ is measured relative to a radius fixed in the cylinder. Direct use of equation (1-12)
would then lead to the replacement of d7*/dz by ®, and d7%*/dr by r®,. However, the
use of this operator in the heat transfer equation would mean that the method of separation
of variables could not be applied to the perturbation equations. For this reason ru will be
replaced in this operator by an approximate value obtained from equation (1-2) by con-
sidering only the leading terms, namely the Coriolis term 2Qu, and the pressure gradient
dp[rdg. Thatis, ru is replaced by — (1/2CQp,) (dp/d¢) ; accordingly the expression for d 77/d¢ is
written in the form

dT_(a v 9

bl Oy 0p )
i =\5t 6¢) T+0,w -+ second-order terms. (1-15)

" 2Qp, 99

The equations connecting the perturbation quantities are now assumed to be the
linearized form of equations (1-1) to (1-6), which, including the above approximations, are

T G T P
e
Po (g_ﬁ_V; 5%) w= ~g—z+gocT+,uV2w, (118)
S o
pM,,{(%—FYr—*%)T 28pog§5+® — kVRT. (1-20)

The justification of this linearization is that the problem under review is essentially one
of stability, most interest being centred on the behaviour of the initial small departures
from the mean flow. The first equations (1-16) to (1-20) form a consistent set connecting
the five dependent variables u, v, w, p, T, and it remains to find a suitable form of solution.
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IN A ROTATING VISCOUS INCOMPRESSIBLE FLUID 5

2. SOLUTION OF PERTURBATION EQUATIONS

We first of all assume that the dependent variables «, v, w, p, T each depend on ¢ and ¢
through a factor exp (im¢ +iot), where m is the wave-number of the perturbation and ¢ its
frequency. Also, in order to employ the method of separation of variables we further follow
Davies (1956) in introducing new variables £(z), 7(z), W(z), P(z), 7(z) defined by

C, , )
2u () " gy cupy, (@)
2io = —£(2) Calpr) +1(2) "5, (0
(2:1)
w = W(z) C,,(f1), (9)
p = P(z2) Cy(fr)s (d)
T = 1(2) C,(r), (0
where C,,(v) is a solution of Bessel’s equation of order m
dzc,, 1dC, m? B )
dw? +5 dw +(1—~_) Cp = 0. (2-2)
This substitution leads to the following system of five ordinary simultaneous equations.
ipy 0§ +2ip, Q' = (dzé ﬁ2€) (23)
/ d?
ipyo'n+2ipy Q'L = 2/>’P+ﬂ (p— 277), (2-4)
., dP dzw
ipg0'W—gar = — 1+ (H“ZT -ﬂ2W) ; (25)
dw
fn+2—— z =0 (2:6)
¢,Po {ia'r imOy QP+® W} {g—g— 27}. (2:7)
Here ¢/, Q' are defined by
o' = 0+2QR, mz/h, QO = Q(1+2Ryz[h); (2-8)

they may be regarded as the effective frequency and effective angular velocity. Their
dependence on the vertical height z is a direct consequence of the baroclinicity, or non-
coincidence of isobaric and isothermal surfaces in the unperturbed state.

The function C,,(fr) introduced in equations (2-1) is any permissible solution of equation
(2-2); for a liquid bounded by one outer cylindrical wall C,(fr) must be taken as J,,(fr),
whereas for a liquid contained between two cylindrical walls we must have

ConlBr) = () B V(1)
The equations (2-4) to (2-8) are identical in form in the two cases. This agrees with the
experimental result of Fultz and Hide that the stability characteristics of the two cases are
not essentially different, for these characteristics depend only on the parameters occurring
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6 J. BRINDLEY ON THE STABILITY OF FLOW

in equations (2-4) to (2-8) and on the boundary conditions at the base and at the surface
of the liquid.

The exact boundary conditions at the outer wall r = r, are ¥ = v = w = 0. However,
since the equations to be used are not themselves valid in the boundary layer next to the
wall, it is sufficient merely to require the vanishing of the normal component of the velocity

at the wall, i.e. u=0 at r=r, (2-9)

In the case of liquid contained between two cylinders there is evidently a second boundary

condition of this type at the inner boundary r = 7,.
At the base of the liquid, z = 0, and at the free surface, z = £, the boundary conditions are

u=v=w=0 at z=0,

%:Z—Zzw: 0 at z=A/.
These are equivalent to E—p=W=0 at z-0, (2:10)
E_ g o e 21

In addition, conditions have to be imposed on the heat flow across these surfaces. 1t is
assumed that there is no perturbation heat flow across either surface. Thus

dr/dz=0 at z=0 andat z=~#h (2:12)

It is convenient to replace the variables &, #, W, P, 7 and z in equations (2:4) to (2-8) by
non-dimensional equivalents §, 7, W, P, 7 and {. We write

z="h{, fh=a, (2-13)

so that the liquid is now contained in the range 0 < { < 1. Also

& = Qnk, 7]_:: Qr,5, W =4Qar, W,} (214)
P = pyar,hQ?P, 7 = poar, g a7,
The following non-dimensional parameters are also introduced
F=30'/Q, f=30/Q, R=Qphp, } (2:15)
K = Qpohc [k, Ry = geh®y(4p, %), R, = ga®,(4p,2%)~",

so that F=f+mRy(. (2-16)

Here R is essentially a Reynolds number for the flow, K is a Péclet number; R, is the
parameter already introduced in (1-14), and f, F are non-dimensional frequencies.
The five equations (2-4) to (2-8) now become (with D written for the operator d/d{)

FE+(1+42R,0)7 = (2iR)~1 (D2—a?)E, (2:17)
Fii+(14+2R,{) L = —aiiP+ (2iR)~! (D2—a?) 7, (2-18)
FW+i7 = iDP+ (2iR)~! (D*—a2) W, (219)
7+DW =0, (2-20)

Fi—mR,P—iR,W = (2iK)~! (D?—a?) 7. (2-21)
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IN A ROTATING VISCOUS INCOMPRESSIBLE FLUID 7

If g, 7, P, 7 are eliminated from these equations, a differential equation of eighth order is
obtained for WW. The elimination is somewhat laborious, and the resulting equation is too
complicated for easy interpretation. It is therefore desirable to make certain approxima-
tions based on the orders of magnitude of certain of the parameters. Typical experimental
values are R =300, f=—005 R,=01 K= 2000,
so that /= —0-05+0-1m{. Accordingly 4?/2R and 4?/2K will be regarded as negligible
compared with F’; since DF is comparable with F/a, at the same time (DF)?, or (mR})?,
will be neglected compared with 2RF3. Again, complications in the eliminations are very
appreciably reduced and no serious error is involved if in equations (2-17) and (2-18) the
factor 14-2R,,{ is replaced by unity, and this will be done. It is not possible similarly to
neglect the part mR;, { of F' (equation (2-16)), since we shall be concerned with progressive
waves travelling slowly in the same direction as the rotation. This implies a negative value
of f, and therefore a possibility that F vanishes within the range 0 < { < 1, giving rise to
singularities in the solutions of the equations.

When the approximations indicated are made, the differential equation for ¥ is found
in the form

e SR gy o _2_)‘ o (1-2)ps

2D+ =2 DIV —2F2 (14 2) DO + 4FmR (1 g))DW

. 1—F? . Rev. -
+ 41F{2F2 —7} RDAV -+ 12imRyy(1+ F?) = DO — 8F*(1 — F?) RRD2Y
+16FmR, R*DIV 1 8F2R?a*(R, — F2) ¥ — 0, (2-22)

where Z denotes the Prandtl number K/R. In solving this equation it must be borne in
mind that F, mRy, and 27! are small, and R~! is very small.

3. SOLUTION OF THE EQUATION FOR W
First consider solutions of equation (2-22) which can be expressed as a series of ascending

powers of R-! W(C) = WO(L) + RO ... (3-1)

If (3-1) is substituted in equation (2-22), a comparison of corresponding powers of R-!
leads to the equations

(1—F) DO 2 mR, DO+ a2(F?— R,) WO — o, (3-2)

K2
4iF (2F2_1—;~) DAV 12imR (1 +F?) ;DW@« 8F2(1 — F2) D2
+16FmR, DIW® - 8Fa2(R,—F2) W0 = 0, ectc.  (3-3)

The initial equation has two solutions, so this method provides just two solutions of
equation (2:22). In solving equation (3-2) we may approximate by neglecting F2, which
is small compared with unity, in the first and third terms. This replacing of (1 —F?2) by unity
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8 J. BRINDLEY ON THE STABILITY OF FLOW

means that two singularities of equation (3-2) are ignored. These two singularities are
given by

Tt B e (3-4)

mRy’ mRy -

Since f is, in the most important case, small negative quantity of order —0-05, the sin-
gularity £, cannot fall within the range 0 < { < 1, and the singularity {; will fall within this
range only if m and R, are large. The critical values of R}, for given m which are obtained
later are such that in all cases the product of m and Ry, is substantially less than unity, so
that the neglect of the singularity {; is justified. The two singularities {; = {, = —f/mRy
(corresponding to F = 0), which will lie within the range 0 < { < 1 if f is negative and
| /| < mRy, are retained. The modified form of equation (3-2) to be solved is then

D2FO— 2 mR, DIVO —a2R,JT® = o, (3'5)

where F = f+mRy{.
Equation (3:5) is precisely that solved by Davies (1956). His method was to change the
variable so that the origin is transformed to the singular point, leading to the equation

&eWo 2 dWo - o
“qr g gpe —CRITO =0, (3:6)

where *= €+m—f]§;{ ={—{;. (37)

The complete solution of (3-6) was shown to be
WO = A(siny —y cos ) +B(y sin ¢ +cos ), (38)

where y = i{*aR%.

Solutions for W® have not been found, since the large value of R, usually around 300,
implies that R~1IW® < WO,

In order to obtain six other independent integrals of equation (2-22) we next make a

transformation W — W(0) exp {RQ(O)}- (3-9)
The derivatives of various orders of /¥ then become
DIV = {Wy(&) RYQ'(() + Wy(()} 40,
D2 — (Wy(RQ2-+ RIQ") -+ 2WRAQ' + Wler'e,
DWW = [Wy{R¥#"Q'" 4 (1+2+... +n—1) RE-DQ""=2Q" + ...}
+ Wy{nR¥e-DQm=1 4 | 34 ] erie,

(3-10)

where the prime now denotes differentiation with respect to {. Substituting (3-9) and
(3-10) in (2-22) and equating to zero the coefficient of the highest power of R (in this case
R?) we find the equation

(;Q'zjuzp) {(Q—2iF)*+4} Q2 = 0. (3-11)
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IN A ROTATING VISCOUS INCOMPRESSIBLE FLUID 9

The solutions corresponding to Q'2 =0 are those already obtained in equation (3:8).
Neglecting these, the values of Q' are given by

Q= (1+i) (1+F),
Q= (1—i)(1-F)}
Q3 =—(1+i) (1+F)}, > (312)
Qy=—(1—i) (1-F)},
Q= (1+i) Fizd,
QL = — (1+i) Fizh,

We next have to determine the corresponding solutions for the function W,({) introduced
in equation (3-9). This is achieved by equating to zero the coefficient of the next highest
power of R in equation (2-22), i.e. that of RE.

The resulting equation is

i ESQ QT8I+ P Q30 (14 2) (@),

_12F (1 +%) (Q')SI,+ 4FmR,, (1 - ;) (Q)W,

4iF "TAT ! TA7! 2.
8 o 1) (6(Q)2 Q'+ 4(Q) i1 2k

—8F2(1—F2) {Q"W,+2Q'Wst+16FmR,Q'W, = 0, (3-13)

(1-+F?) (@)W,

which, on replacing (Q;)? by 2A(1-+F) for i—1,3,
by —2i(1—F) for ¢=2,4

and by 21F%? for 1=25,6
leads to the equation

F 2 F
224 (1-+F) + 120F (1 17) (14 F)2—48 (2F*— 1+ F?) (14 F) —8F(1— )

We _ Qi
I701‘ B 2, F 3 2 2 F
-64?(14—}7) +48F%(1+F) —32?(2F2ﬂ—1+F2) (1+F)—16F?(1—F?)
S +Fy—16F (1 2) 1+ F)2 =2 (14F) (1 F) + 16F
—mRy,
G (L F)S L4821+ F) 32 (9P 1 ) (14 F) — 16F2 (1 — F)
for i=1,3. (3-14)
On retaining only the terms of order unity, together with F, this simplifies to
G mRy [——176+112F9:|_ » [ 64—32F2 | —3mR,
Wy  2(0+F)L —32+32F7 |~ "' 321 32F7 | 4(11F)’
giving Wy= (1+F)% for i=1,3. (3-15)

2 VoL. 253. A.
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10 J. BRINDLEY ON THE STABILITY OF FLOW
By use of exactly similar approximations the other solutions for I/}, are found to be
Wy = (—1+F)"% for i=24, (3-16)
Wy = F-{F2(#—1)2—1}"! for i=5,6. (3-17)

The eighth independent solutions of equation (2-22) obtained by asymptotic series are
therefore

<

7, = (1+-0) Texp | [ RY(1-+0) (1)1 dg),

7, = (~1+5) exp|[* RI[(1—i) 1~ F)1] dg),
7, = (1+F) Texp | [* R~ (1) (14)1]d],
o= (~14F)tesp|[* B[ (1-i) (1-F))d], (3:18)
7, = P12 =1y e[ RI(1+) P ag),

W, — F“%{F2(9—1)2~1}‘1exp{fi RY— (1+i) Fio!] dg},

W O], where p—i((—0) ey

and the complete solution for W is
W ==

=~

C;

12

(3-19)

~Mes

where the ¢; are constants.

Itis evident that at least two of the solutions, namely I¥; and W, have a branch point at
{ = {,, l.e. the point at which F vanishes. If this point lies between { = 0 and { = 1, the
choice of the correct branch is not at once clear. Similar difficulties arising in the solutions
of the Orr-Sommerfeld equation for parallel flows in hydrodynamics have been discussed
by Lin (1955). For the present, however, we merely state the requirement that one must
choose a path of integration from { = 0 to { = 1 in the complex {-plane such that the real
part of () increases monotonically. An indication of a suitable choice of path is given in

appendix A.

4, THE BOUNDARY CONDITIONS

The boundary conditions appropriate to the problem have been set out above in the form

E=np=W=0 at z=0, (2-10)
d¢ dyp ., _

a—£~—£- W——O at Z——ll, (2'11)
dr

=0 at z=0 and at z =~/. (212)
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IN A ROTATING VISCOUS INCOMPRESSIBLE FLUID 11

The task of converting these conditions to expressions containing W only is rather formid-
able, and it is found more convenient to apply the conditions directly as they stand, assuming
solutions for £, 7 and 7 of the form

& = Luexp{R}Q,()},

7 = Torexp {REQ,(0)}, o (41)
T, = To; eXp{RQ;(0)},

where Q;({), i =1, ..., 6 are given by equation (3-12).

The functions &, 7,;, 7,; are found in terms of I¥; by using equations (2-17) to (2-21), and
the complete solutions for &, 7, 7 are

Il

Z = ECi Ej:
7= 267, (4-2)
T = 2T,

where the ¢; are identical with those of equation (3-19).
The functions &, 7, 7,; are found to be, to the first approximation in powers of R?,

Eor = —RM(1+1) 1 +F)} Wy, Eop = RY{(1—1) (1 —F)}} Wy,
Eos = _‘R%{_ (1 +i) (1 +F)%}VT/03a 204 = R%{_ (1 'i) (1 _F)%}Wo‘p
505 = _'%{(1 +1) Fﬁ%ﬂ%}msa EO6 = "—?’%{_ (1-+1) F~%‘@%}W)6;
oo = —RY(1+1) (1 +F)*} W, Moz = — RY{(1—1) (1 —F) 1}y,
Moz = _“R%{“ (1 +i) (1 +F)%}W;3, Nos = —R%{“ (1 _i) (1——F)%}I7l704,
Tlos = — RH(1+1) F*2H0;, Tlog = — R — (1+1) FA2H W g5
Tor = (F(#—1)— 1} iR Wy, Tor = {F(#—1) + 1} iR Wi,
To3 = {F(P—1) — 1} 1iZR W, Toy = {F(P—1) + 1} iZR Wy,

P

{FA(7—1)2 =1} W

- n 7 - _ .

Tos = —21R§7_~1— {F2(P—1)2—1}W;, Tog = —~21Rg,_1
(4:3)

The application of the boundary conditions (2-10) to (2-12) above leads to a consistency

equation for the non-vanishing of the coefficients ¢;, and this equation takes the form

Wi(0)  Wh(0) Wi(0) Wi (0) W;(0) We(0) Wi(0) W(0)

W) W(1) Wy (1)

7.(0)  75(0) 75(0)

B0)  2,0) 5O |
Dy,(1)  Di,(1) Drg(1) .

DE (1)  DEx(1) DEy(1)

DA(1) Dr) D7(1)

D (0) Dry0) D7, 0)
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12 J. BRINDLEY ON THE STABILITY OF FLOW

All the terms in the first column have a factor exp {R’f f Q1 d(:} so those terms evaluated at

¢ = 0 have a factor
exp{R%f (1+i)(1+F)%dg},
&1

and those terms evaluated at { = 1 have a factor
1
exp{R%f (1+i)(1+F)%dg}.
&

This feature enables us to simplify the determinant considerably, for if the first column

be divided by .

exp{R%f (1-+i) (1+F)%dg},
&

the terms evaluated at { = 0 have a factor
exp[ R (1) (14-F)td],
and, provided the path of integration chosen is such that
[+ a+ria=o,

this factor means that these terms may be neglected by comparison with the terms evaluated
at { = 1. Since F'is much smaller than unity the real axis provides such a path in this case.
Similar simplifications may be made in columns 2, 3 and 4, the choice of path of integration
causing no difficulty, but when the method is applied to columns 5 and 6 a factor

exp‘ R%f (1+i) Fioph d{}

arises. In order to justify the neglect of such terms by comparison with unity it is required
that the path of integration chosen should be such that [ F*d¢ taken along the path should
increase monotonically from { = 0 to { = 1, the condition referred to above.

As a consequence of these simplifications, equation (4-4) becomes

0 0 Wis(0)  Wou(0) 0 Wos(0) W7(0) Wy (0)
Wa(l)  Th(1) 0 0 Wos(1) 0 Wi(1) Wy(1)

0 0 To3(0) 704(0) 0 Tos(0)  7;,(0) 75(0)

0 0 £s(0)  &0s(0) 0 £s(0)  &(0) &(0)
RO 0 0 RQu1) o Dpmdgn | EY
REQEn(1RQyE5(1) 0 0 REQEs(1) 0 DE(1)DEg(1)

RYQ1 7 (1) REQ3 T (1) 0 0 RYQy75(1) 0 D7,(1)D7g(1)

0 0 REQiT3(0)RPQ470,(0) 0 REQ,75(0)D7,(0)D7y(0)

where the derivatives D7;, D, D7, have been replaced by the leading term in their expan-
sions in powers of RE.
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IN A ROTATING VISCOUS INCOMPRESSIBLE FLUID 13

Evaluation of the determinant is now quite straightforward, and the resulting form of
equation (4-5) is

[(L+9o¢y) sin (Yo—¢1) — (Yo — V1) cos (Yo—¥1)]

3
g L0 o 0 0w Wasin =)+ othcos )]
+O(R 1Y) =0, (46)
where Yo = —ilaRy, § —i(1—L,) aRY,

The vanishing of the term independent of R constitutes the condition established by
Davies (1956).

Before proceeding further, an assumption made in the evaluation of the determinant
must be stated explicitly. In certain of the terms (see (3:18), (4-3)) a factor {F?(#—1)2—1}"!
or {F(#—1)—1}"! occurs, and these factors have been assumed small by comparison with
R:. However, since F = f+mR,{, where f is usually a small negative quantity, it seems

that F will attain the value (T@Tl_T) within the range 0 < { <1 for certain values of m

and Ry, suggesting the presence within the liquid of a layer where velocities and tempera-
ture gradients are large. Unfortunately, experimental data for liquids of differing Prandtl
number are at present insufficient to permit a useful examination for such a phenomenon.
A discussion of the mathematical implications is given in appendix B.

5. DERIVATION OF A SOLUTION FOR f AND COMPARISON WITH EXPERIMENT
Equation (4-6) provides us with one relationship between the parameters f, f, R,, Ry
and R. A second is obtained by considering the consequences of satisfying the boundary
condition u = 0 at r = r,. The appropriate expression for « is derived from equations (2-1a)
and (2-17), namely

2u = [P 4 (P 220} T EO — st T S

Now u must vanish at r = r, for all {, and the second derivative d?§/d{?is of order R only in
the neighbourhood of { = 0 and { = 1, so the approximate condition we shall use is

WP 1 fafr) = 0 (51)

i.e. Fis replaced by the quantity f, which is independent of {. Writing equation (4+6) in
a more explicit form, we have

{laR%+R Rl R (1+m{2 )[(1—1) a%—(1+‘)—lif‘ }cos (iaRY)

~{1—f;‘;;R <1+~%~)+R iR, . [ HJ{; — (1) L }sin(iaR%) _
(52)

We now seek a solution of equations (5-1) and (5-2) in which fr, and f are each expressed
in terms of a series in ascending powers of R, putting

r, = 18, 4.
/?o ﬂl+R ﬂ2_|_ )1 (5.3)
f=F +R3F,+...)
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14 J. BRINDLEY ON THE STABILITY OF FLOW
From the Taylor expansion for the Bessel function J,,(x) it follows at once that
(Bt BByt ) = T, (By) + Ry T (B1) + O(R) (5:4)
’ 1 ’ — 1 !
and T+ Ryt ) = Tl ) =R [ Tl + (1= T5) T8,

so equation (5-1) becomes, retaining only terms of order unity and R,
m{J,(B1) -+ Ry T, (1)}
(B BB (Bt BB T8 — R Tt + (1) 8] ] = 0. (59
By equating to zero the terms of order unity and order R~* respectively we obtain the
cauations ATARS Y NATARY (56)
Polmd (1) + (B ) (m? 1) T, (B)] -+ Fofy T(By) = 0. (5:7)

Two further equations are obtained by substituting the expressions (5-3) in (5-2), using the
relation a = fh = (h/r,) (f;+R~}f,+...) and equating to zero the terms of order unity and
R-* respectively,

BixtF

F .
ﬂlxlcosﬂlx1~—{l—|— nk, (1+ Rl)}mnﬂlxl:O, (5-8)

ﬂz[{ 2;; (1+ i{ )}sinﬁlxl—m—ljé;(lJr;Zﬁ)ﬂlxlcos/o’lxl:l

—F, ’b; (1—1— }];)smﬂlxl 475}%}1{( —1)

14F,
a0 g

X {sinﬂlxl—(l +7—n7§[;) B % cos/)’lxl} =0, (59)

where iAR?r, is written as x;. We now have a set of four equations (5-6) to (5-9) connecting
the four unknowns F,, F,, f,, f,. I, and f, are found by solving equations (5-6) and (5-8);
this has been done approximately by Davies (1956). These results are then used in equations
(5-7) and (5'9) in order to find a solution for F, in terms of the other parameters, m, R, R,
K and R, of the problem.

Davies’s solutions for /| and f, are

F ko,
m]éH == —O-5-O-0229;;R;Rme:tO-Qlet{( y

3
1—|—2R )/LRyxsm 24} , (5,10)

b= X (1—%), (5-11)

where x,,, is the sth zero of J,,(x) = 0.

The second term on the right-hand side of equation (5-10) is much smaller than 0-5
and is therefore neglected. The third term is imaginary for {(1-+4R,)AR}x,, }/r, < 2-4,
and since complex values of fimply instability it follows that the vanishing of this third term
provides a stability criterion in the first approximation. Writing F; = F5+1F, 5, where
F,4 and F| 4 are the real and imaginary parts respectively of F, we have F, equal to
zero for {(1+}Ry) hRix,,}/r, > 2-4 and F 4 equal to 0-5 for /|, non-zero.
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IN A ROTATING VISCOUS INCOMPRESSIBLE FLUID 15
The stability criterion is the vanishing of the imaginary part of f, i.e.
Fiy+R i, =0, (5-12)

where F, ; is the imaginary part of I, so the next requirement is a solution for F,, the second
term in the series (5-3). An explicit equation for F, arises when f, is eliminated between

(5:7) and (5°9), and is F,— G(By, )
where i)
Gzéyf}zl;{(l_i)(l ]fl) —(1+ (l F {sm/)’lxl ( +n—g%;1)ﬂ1x1005/’71x1}
x (I8 + 5 =) ()]
H= l:{l ~~7:}];;I (1 ‘|‘m%H)}Sinﬂlxl—n%(l+_ﬂ_)ﬂ1xlcosﬂlxl:|ﬂl‘];n<ﬂl)

m’% (1+ R )smﬂlxl{mJ’ (By) + 5 ( z*ﬁ%)‘]m(ﬂl)}- (5-13)

Now if the value of F| s from equation (5-10) is substituted in equation (5-12) an equation
is found which is true when the imaginary part of f vanishes, so the values of the parameters
satisfying this equation might be expected to have some critical value in the change-over
from wave to spiral flow. This equation is

(1 +3Rp) AR x (£as)®

v¥sm =924 — 25
ry 4 (0-214mR5)%R

(5-14)

The complicated and unsymmetrical nature of the solution (5-13) for [, makes this
equation rather difficult to handle in its exact form, but certain approximations based on
the assumption that R, < 1 may be made, namely

—(1+1) -

(i) the factor {( i)

is replaced by —2i;

(i) the first of the two terms comprising H(f,, F), being of order R, x the second term,
is neglected.

Thus an approximate solution for F, is given by

Fé:%—241~(1+;§%)ﬂﬂﬁCOU%xJ/4( ;g?). | (5-15)

H:

14-F, }

U+F) (1—F)

The imaginary part, F, ,, may be written in the form

F _ 1(0-856)2{(1+ $Ry) y—2-4}y cothy — 0-0916y R, {1 — (340 O229yRH)ycothy}
25 = (0-856)2{(1+4R;;) y—2-4}+ (0-0916yR,;)?

(5-16)
hR}
where Y=—"%, (5-17)

]

from which it appears that, except when {(1+4R;,) y—2-4} is very small, i.e. when F,,
is very small, a good approximation for F, , is

F, ; = }lycothy. (5-18)
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16 J. BRINDLEY ON THE STABILITY OF FLOW

Equation (5-14) then becomes
_ y*coth’y
16(0-214mR ;)2 R

(1+3R,) y = 24 (5:19)
and gives a criterion for stability in terms of R, and R, for a given wave-number. However,
almost all experiments have suggested a critical dependence only on parameters identi-
fiable with R, and so some sort of relation between R, and R, might be expected to exist.
Lorenz (1953) and Davies (1956) have shown that there is in fact such a relation, and
Davies derived an explicit form for it. His method was to expand the non-dimensionalized
dependent variables in ascending powers of R, namely

u= Ryu, +R%u, +...,)
v=r +Ryv, +R%v, +...,
w = Ryw 4+ Ry wy+ ..., , (5-20)

p=1+Ryp +Rypy+...,
b= po+Ryp +R%1ﬁ2 T
T=1y+Ryr) +R%47y+ ...,

and then to solve the systems of equations obtained by considering respectively those terms
independent of R, and those terms of the first order in Rj,. The solution is found only in the
case of the symmetric régime (i.e. variations with ¢ and ¢ are ignored), and it is assumed that
the ratio of the mean vertical temperature gradient to the mean horizontal temperature
gradient, (07/dz) /(0 T/dr), where the bar denotes a value averaged over r and z, is equal to
the ratio ©,/47, ®y of equation (1-12). This leads to a relationship between R, and R;; of
the form W2R K7

v 1R2

the prime denoting differentiation with respect to ». The function 7, (which is found to be
a function of 7 only) must be chosen to conform with the boundary conditions on the tem-
perature distribution. Experimental results are most reliable for the annular case, so in
order to make a comparison it is necessary to replace x,, of equation (5:17) and (5-19) by
7,0 Where § = f, is the sth zero of the equation

S B10) Yo(Bri) =, (Bs) Y Bry) = 0, (5-22)
r,, 1; being the radii of the outer and inner cylinders. The first zero, £,,, is of vital interest,
and this is given to a sufficient degree of accuracy by the asymptotic expansion

Pim = r;ri{wr Mmi},;i;‘frl’)z»k } (5-23)
The function 7, which must satisfy the conditions
(1) =14 (:_) —0 and ry(1)—7, (‘:‘) —1
was chosen by Davies to satisfy
, 12(r—x) (1—12) (5-24)

0T A (3 )
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IN A ROTATING VISCOUS INCOMPRESSIBLE FLUID 17

where x = 7,/r,, and this choice leads to critical values of R}, as follows:
wave-number m 0 1 2 3 4 5
crit. value of R;; 0-19 0-16 0-15 0-12 0-11 0-09

Use of the more refined stability criterion (5-19) leads to results for the critical value of
R, some 5 to 10 %, lower than these, so that the large discrepancy with observed results
remarked on by Davies does not appear to be substantially reduced when viscosity is taken
into consideration. Perhaps the most obvious explanation for this discrepancy lies in the
fact that the relation between R, and R obtained by Davies is strictly valid only for the
régime of symmetric motion. Moreover, investigations by the present author of later terms
in the expansions (5-20) suggest that the convergence of these series solutions is very slow
for values of Ry near the observed critical value. It appears then that before any better
quantitative agreement may reasonably be expected a more reliable equation relating R,
and R, must be deduced. Such a relation would be most welcome for the régime of wave-
like motion, but the difficulties in this case are considerable, and have so far defied any
general analysis. However, the widely held beliefs in the importance of mean isothermal
slopes in stability problems of this kind should stimulate further attacks on the problem.

A reason which is less apparent but perhaps of more significance is the occurrence in
several of the solutions (3-18) and (4-3) of a factor {F—[1/(#—1)]}~!. This factor becomes
infinite where F = 1/(#--1), i.e. when

ik = A (525)

If this value of { coincides with one of the boundaries of the liquid then the simplification
of the determinant of consistency by the method of § 4 is certainly not possible, and the
stability criterion (5-19) could not be expected to be true. Moreover, asisshown in appendix
B, in passing through the point {;, certain of the solutions (3-18) and (4-3) interlock with
each other, so the validity of the simplification of the determinant, and hence the criterion
(5-19) is in some doubt for all values of R for which 0 < {, < 1. Since fis usually a small
negative quantity, the first appearance of {, within this range as R increases will be at
the boundary { = 1. The value of R, for which {; = 1 may be deduced provided that a
value is allotted to f, and, since no such values are to hand for the experimental results of
Fultz quoted by Davies (1956), values may be deduced from the results of Hide (1958) for
exactly similar experiments.
In fact o mw
f = 20 = 20’

where w = velocity of drift of waves relative to the cylinder. Using Hide’s results for an
annular cylinder of inner radius 2-35 cm and outer radius 4-85 cm (cf. Fultz’s inner and outer
radii of 2-45 and 4-90 cm) we obtain

m 1 2 3 4 5
S no observation —0-033 —0-037 —0-026 —0-017
Thus the values of R, above which { lies in the range 0 < {, < 1 are, assuming #= 7
wave-number m 2 3 4 5
crit. value of Ry 0-10 0-07 0-05 0-035

3 Vor. 253. A
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18 J. BRINDLEY ON THE STABILITY OF FLOW

These values of R, are therefore considerably less than the critical values of R, obtained
above from equation (5-19) and are very close to Fultz’s observed critical values for change-
over in flow type quoted by Davies, namely

wave-number m 0 1 2 3 4 5

observed critical value
of Ry, (after Fultz) 017 015 013 007 005 003

This suggests that the reason for change-over may in some way be connected with the
appearance within the limits of the fluid of the singular point {,, near which some of the
viscous solutions become large, but, in the absence of any results for critical change-over
values for variable Prandtl number it seems impossible to draw any definite conclusion
in this direction.

One further result remains to be mentioned. Equation (5-19) is satisfied by a second
positive value of R, a very small value which may be obtained approximately by equating
the right-hand side of the equation to zero, i.e.

y*coth’y
16(0-214mR )2 R

—2:4—0. (5-26)

Using (5-17) and choosing for R a value typical of the experiments, R = 300, we obtain
values of R, as follows:

wave-number m 1 2 3 4 5
critical value of RH 0-04 0-02 0-015 0-01 0-008

Thus there appears to be a second critical value of Ry, below which wave motion is im-
possible, and this second critical value has in fact been observed by Fultz. The dependence
on R of this lower critical value suggests that the reason for its existence is viscosity ; below
the critical value, wave motion is damped out by the viscosity of the liquid.

The foregoing theory has therefore predicted the existence of a régime of wave-like motion
corresponding to a certain range of values of the Rossby number, between what we may
term the upper and lower régimes of symmetric flow, and in this respect the results are in
qualitative agreement with the experimental evidence of Fultz and theory of Kuo (19566).
However, some uncertainty exists as to whether the upper range of values of critical R
should be chosen to be the range obtained by equating to zero the imaginary part of £, or
that obtained by putting {, = 1. The former method leads to results substantially the same
as those of Davies, while the latter certainly gives a much more accurate quantitative agree-
ment with Fultz’s experimental figures. Perhaps further conjecture should await the
appearance of more detailed experimental evidence, preferably relating to liquids of
differing Prandtl number and coefficient of viscosity.

Further discussion of the physical aspects of the problem is beyond the scope of the
present paper. It remains to the author to express his thanks to Professor T. V. Davies for
suggesting the work contained in this paper and for his constant help and advice, and to
Professor T. G. Cowling, F.R.S. for many helpful suggestions and criticisms.
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IN A ROTATING VISCOUS INCOMPRESSIBLE FLUID 19

APPENDIX A. INVESTIGATION INTO THE CHOICE OF PATH OF INTEGRATION
IN THE SOLUTIONS W, AND W oF (3-18)

Consider again the equation (2-22) for W i.e.

i e BimRy
PV =13

__ k2
+ 411«*{21?2% 1—;—} RDW +12imR (1 -+ F?) % DSV — 8F*(1 — F?) R*D?IY

DI — 2F? (1 +§}) DSV - 4FmR,, (1 _ }?) D7

-+ 16FmR;, R2DW + 8F?R%?(R,— F2) W = 0. (A1)

The two solutions W, and W} arise from letting R - oo and considering only the last
three terms of (A 1); the other six solutions come from the first seven terms. Itisin the two
solutions W, and W that difficulties occur in the determination of the correct path of
integration around the branch point at { = {;, and we accordingly seek a representation
of these solutions which is valid for small values of {—{;. To do this, a ‘change of scale’ is
made by introducing a new independent variable, y, such that y = ({—{;)/e where ¢ is a
small parameter. In choosing ¢, it must be borne in mind that the solutions I¥; and I, on
which attention is to be focused, may be treated as arising effectively from the derivatives
of second and fourth order. Thus it follows that the required choiceise = R~*; Fisthen equal

to mR ey, so writing W = W) +e,W(x)+... (A2)

and equating to zero the lowest power of ¢, we have the fourth-order differential equation

—%%‘ d;;’?/ 1—;1 d;;’?/ —8mRy x? d;;’?{Jr 16mR X d G‘{XW = 0,
which may be written in the form
¥D Eg (D2—2imR,,#y) D OW] —o, (A3)
where d/dy is written as D.
The solution of equation (A 3) takes the form
W = Ay W+ Ay Wy -+ Ay W3-+ Ay W, ' (A4)
where J#] is a constant, D ¥, is a particular integral of the equation (A5)
(D2—2imR,;Zy) ® = y3, (A6)
and D JW#;, D W, are two independent solutions of the equation 4
(D2—2imRx) ® = 0. (A7)

Equation (A7) can be shown to have the solutions
O, = ¥y V[ —2imR, 2] k1)
®, = ¥ Y3 V[ —2imRy 2] o))
Also the Hankel functions, H{Y and H? are defined as
HY = J,+iT,,
HY? +J,—iY,.
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20 J. BRINDLEY ON THE STABILITY OF FLOW

so it follows that the third and fourth solutions of equation (A 3) are

I, = [WHPE /T 2imR 2120 dy,
(A9)
= [PHPG [~ 2imR, 2] ) dy.

Moreover, the asymptotic expansions of the Hankel functions H{"(v) and H{?(v) are

l

mo~ (Y enlfe- e S Y aw

r=1

valid for —7 < argw < 27, and

et~ () e =i+ 5 53

for —27 < argw <.
So if we now put w = 2,/[ —2imR,Z] y*, then (A 10) become

HP{2, /[ —2imR 2] ¥} ~ const. x y~¥exp [{2 /(2mR,2) xE etni} —Ffmi] x {14 0(x 1)}
for —Zm < argy < gm;
HP{2 /[ —2imR 2] ) ~ const. x y~texp [{3./(2mR,2) x¥ et} - Fymi] x {1+ 0(x ¥} (A11)

for —Ilm < argy < §m.
Thus it follows that

Ty~ const. x [x-bexp [(§(2mRy ) o i3] {140 Y} dy,

j—

(A12)
T~ const. < [t exp [{§ /(2mR,2) 7] {1+ Oy D)} dy,

the expressions being valid in the regions defined in (A 11). If we next take the legitimate
step of integrating by parts, and choose our lower limits to be +oo in JJ#; and —co in, ¥,
(since the real part of e#7! is negative, while the real part of ei"! is positive), we get

JV, ~ const. X y~texp {2 /(2mR,?) x} i} + terms of order (y ¥exp{ }),
WV, ~ const. x y~texp {2./(2mR,2) x* et} +terms of order (yfexp{ }),

which become, in the notation of (3-18)

oW; ~ const. X (g“‘gl)“% CXP{_JE (1-+1) R} [mRHg(g“gl)]%d§>+
‘ (A13)
IV, ~ const. ({;—gl)~%exp{+fz (14+i) RE [mRH@(g_gl)]%d{;}+..., as Y0,

These asymptotic expansions for (#; and (I, are seen to be in agreement with the
solutions I, and I, of (3-18), and since the region of their validity is well known it is now
possible to find a path of integration around the singular point, { = {,, such that the require-
ments of § 4 are met. Such a path must not cross either of the lines

arg ({—¢,) = §m, arg({—{;) = §m,

and so must pass below the point { = {, in the complex {-plane.
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APPENDIX B. INVESTIGATION OF THE BEHAVIOUR OF THE ASYMPTOTIC SOLUTIONS
IN PASSING THROUGH THE SINGULAR POINT F = 1/(#—1)

In order to discuss the behaviour of the solutions as they pass through the singular point
{={, at which F=1/(#—1) = F,, it is most convenient to return to the basic set of
equations (2-17) to (2-21), which become, on replacing (1+ 2R, {) by unity, and neglecting
a?/2R and a?/2K by comparison with F

FE+7 = (2iR)"1 D%, (B1)

F+& = —a%iP+(2iR)~1 D%, (B2)

FW+i7 = iDP+ (2iR)~1 D, (B3)

7+DIW =0, (B4)

Fr—mRyP—iRW = (2iK)~-1D?. (B5)

Writing F=FymBRy () where {* =({—{, (B6)

and Fy = f+mR,¢,, |

and replacing (B1) and (B2) by their sum and difference, respectively, we obtain

{1+ F,+mRy,{*—(2iR)"1D?} (§+7) = —a%P, (B7)

{(—1+Fy-+mRy{*— (21R) " D%} (E—7) = a%P, (BS)

{Fy+mRy,{*—(2iR)"' D} W +i7 = iDP, (B9)

7+DW =0, (B10)

{1 +Fy,+mR, (1 +1%) ¢* — (21R)"! D2}? - (1 +1:13) (mR,C*P+iRJV).  (B11)

Now the solutions of interest are those for which £ and 7 are comparable with 7 near {;
these are the solutions of suffix 1 and 3 in (4-3), for which (2iR)"!D? ~ 1+ F, and the
solutions of suffix 5 and 6, for which (2iR)"!D? ~ FZ. At F = I, where these solutions
have an infinity, 1+F = FZ, so some interaction between them may be expected.

In equations (B 8) and (B 9) we may replace (2iR)~! D? by 1-+F, and neglect mR{* for
small {*, but the small value of (2iR)~1D2—1—F is vital in equations (B7) and (B11).

Thus we have —2(E—17) = a¥P, (B12)
—W +i7 = iDP, (B13)
{1+ Fy+mRy{*— (21R) "1 D?} (£47) = —ad%P, (B14)
DIV = —7 = HE~7) — E+7)} = —bdatiP+E+7). (B15)

From (B 14) it follows that a%iP < £+7, so (B 15) approximates to
DWW = —4(E+7). (B16)

Similarly, from (B11) 73> mR,{*P+iR W, so that either 7> P, W, or 7 is not large
compared with P, W, but mR,{*P = —iRJW. The second alternative is inadmissible since
it would imply that in equation (B13) the right-hand side > left-hand side. Thus
7> mRy{*P+iR W, and equation (B 13) becomes
7= DP. (B17)
33
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22 J. BRINDLEY ON THE STABILITY OF FLOW
Whence, substituting in (B11)

{1 F,+mR,, (1 +Fl—) ¢* — (2iR)-1 D2} DP — (1 r%—) (mR,C*PHiRJW)  (B18)
0 0
and combining equations (B 14) and (B 16),
{1+ F,+mR,{*—(2iR) "1 DA DWW = La%P. (B19)

Equations (B18) and (B19) now determine P and IW; since we are interested in solutions
for which (2iR)~1D2—1— F is small we write

W =evs* 1, P=ev¥* P, where y%=2iR(1+F,), (B 20)
where the functions I#] and P, do not vary rapidly near {* = 0. Then

3
F, (D2 +3ly) )P (mRy, (% —2F,) DP, +-mR,(1—y¢*) P, — —iRJV,,  (B21)

(1-453) (5 + 22 IR — Ry £ — 201+ F)y DIT,—yB, 497, = — 4aiP,. (B2
Since I}, P, do not vary rapidly near {* = 0, it may be assumed that
DP, D, DP,
2 DPl D2p, <7
T 3
and also that, because of the smallness of {*, ymR,,{*P, is not large compared with DP;.
Equations (B21) and (B 22) then simplify to
2F, DP, -+ mRy,(1—y(*) P, = —iR ¥, (B 24)
2(1+F,) DW, —ymR, {*W, = — }a%P,. (B 25)
For large values of |y{*| the solutions of these equations should be in agreement with the

solutions (4-3); in fact solutions are of two types:
(i) those in which P, > I, given by

(B23)

DP, yl*mRy . - y{*2mRy, 1 { §*2mRﬁ}.
P, ~ o, Le. P, CXP{_ZIT#} and W 7T % €Xp af, |’
(ii) those in which I} > P,, given by
DIV, yC*mR, . o plfmR, perenky
w (1—|—F) ie. W exp{4(1+FO)} and P, é*exp EENATE

These solutions agree with the results of § 3, since

*2

where R = y( § mR )
, mR F .
therefore 2 R{ L& o 0(§*2)} %‘F — %iFZ,

ie. = (Q5)* = (Q)?
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and therefore the solutions (i) above correspond to solutions with suffix 5 and 6 of §3;
similarly solutions (ii) correspond to solutions with suffix 1 and 3 of § 3.

We now wish to find out whether the solutions of type (i) and (ii) above are valid for {*
both positive and negative, or whether they change in passing through {* = 0.

Suppose first that the real part of ymR, is positive, so that the exponential in solution (i)
is asymptotically large compared with that in solution (ii). Then we assume that a solution
exists such that, for both positive and negative {*,

_ *2 R
P o =Ae {% m H} B26
1 Xp 4F0 ( )

In order to check whether or not this assumption is self-consistent, we must substitute
(B 26) in (B 25), and solve for 1/, leading to

*2
2(1-+ Fy) DIV, —y0mR ¥, = — et exp 14" 0], (B27)
0
. d [ y¥2mR\T Ak yg*szH}
dg* [ exp{”4<1+Fo> - 11+ F) exp{etFo(HFo) '
- “7§*2mRH}__ Aa*i J‘ {yé’*szH} %
Thus WICXP{ A1+ F) T T a(rFy) PR+ E) d¢

and since, for consistency, we must have

1 y{*2mR,,
Wi~z en )

it follows that the limits of integration on the right-hand side should be 0 and {*. This is
because

ﬁ*e {JC*ZmRH}dC* _ 2F(1+ ) ex { y{**mRy }ilg*

P 4F,(1+F) y{*mRy 4F,(14Fp))
€ 2K, (14 Fy) Y& mR *
f Y¥ImRy, {4}«},(1 +F0): ae%,

so by taking |y{*2| > |ya?| > 1, we have

& *2 %2
JM&L} w25 (1+ Fp) { y(**mR }
fo { d¢ XP 4F,(1+F))°

y{*mRy

- Aa?iF, {yg*szH} (B28)

giving Wy~ — Sy C*mR,, exp | 7
for positive and negative {*.

Also the solution for I#] remains finite at {* = 0. It appears then that the term on the
right-hand side of equation (B 24) does not appreciably affect the solution (B 26) in passing
through {* = 0, and therefore the basic assumption that (B 26) is a solution for positive and
negative {* is self-consistent.

Suppose next that a solution of type (ii) exists, so that for both positive and negative {*,

#2, R
m#Bexp{Zil_n:Fﬁ;. (B29)
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24 J. BRINDLEY ON THE STABILITY OF FLOW

In order to check for self-consistency, we substitute (B29) in (B24) and solve for P,
leading to

9F DP,+ (1 —y¢*) mR,, P, — —iBR, exp {Vg(“r F)} (B 30)
. d 75 2{*—7{*2 ) mRy, v 20*mRy  y{* mRy, }
Le. age| Prep| ﬂ_ oF, p| i, AR 1R

% 2 ; * %2
Thus P, exp { (20* —y¢ )mRH} _ iBR, exp {2€ mRy  y{**mRy

— }dg*
4F, 2F, 4F, 4F(1+Fy)
and, for consistency, we must have

P o (i)

For {* > 0 this condition can be satisfied by taking the limits of integration to be {* and o0
then the integral converges because the real part of ymR,; is positive, and for large y{* it
is approximately equal to

2F,(1+F) {2_§*mRH_ y{*°mRy, }
y{*mR,, 4F, 4F(1+Fy))°

5 JRBOHE) {yé*szH} (B 31)

which gives P~ yOmR,,

For {* < 0, however, with these limits of integration, the integral becomes approximately

2F(1+Fy) {2§*mRH_ y(*2mR,, }+ {477F0(1 +F0)}%CX {mRH(1+FO)}
yC*mR,, 4F, T4F(11F) ymRy, P\"ary )

which gives

s - + F, y{*2mRy\ | (m(1+F )} y{*2mR g
P1~1RUB[y€* R, Xp{4(1+FO)}+{yFOmRH} exp{ if, }:I (B 32)

and self-consistency is violated because the extra term in P, introduces an extra term in ¥
for {* < 0, which is contrary to our original supposition that

W, = Bexp {7€(1 Zl};})): (B29)

for positive and negative {*.
We must accordingly assume that I} is given by

o ) [+ 5 ) o ). o

The extra term in I, will of course introduce an extra term in P,, but this may be shown to
be negligible. Substituting (B 33) in (B 24) we find that the extra term is

exp [~ ) b [t L) L, el )]
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For large y{*?2 the inner integral

J*g*exp{%}dg*’

*2
is comparable with 25,(1 1 1) ex { Y 2mR }

yE*mR 41y (1+Fy)
& y{*2mR )
* VST |\ ek
and, as {* — 0, f exp {4F( _}_FO)}dé' - 0.

Hence the term (B 34) is comparable with
—(20% —yC*2) mRH} iR, Ba? {71(1 —}—FO)} {2€*mRH yC*2mR,, } .
exp{ 4F, dymBRy \yFymRy | J ¢ g* “Xp 4F, 4(1+F) dg*,

where no account need be taken of the infinity of 1/{*. This is certainly small, of order 1/y,
compared with the terms retained in the expression (B 32) for P,.
Thus, for large negative {*, the solutions of type (ii) become

%2 . 3 %2 '
P,—iRB 1+ F, exp{yg mRH}_]_{ﬂ(l Jr‘FO)} exp{yg mRH}],

y{*mR,y, 4(1+F) yFymR 4F,
(B 35)
yO*mR, ) R, u (1+F)} {yg*sz }]
W= B[eXP{ s(1+F) T 2y0mR, | ymR,, | P\ 4R, |’

The reason why the solutions of type (ii) appear to interlock with those of type (i), while
those of type (i) show no converse effect, is that, when y(*? is large,
*2 %2
exe [ ) > e [
and therefore a small contamination of a solution of type (i) by one of type (ii) is not notice-
able; a contamination in the reverse sense, which occurs here, is important.

This analysis indicates that some of the asymptotic solutions obtained in § 3 do not con-
tinue unchanged through the singular point { = {,, but interlock with each other. If this
is so, then the validity of the determinant of coeflicients (4-4) is suspect for values of R}, such
that 0 < {, < 1, and, in order to obtain the correct form, the exact transformations of the
asymptotic integrals in passing through { = {, would have to be found; the analytical
difficulties of this problem put it beyond the scope of the present paper.
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